材料沉积喷墨打印及
涂层系统解决方案

Get一下

基于Inkjet、EHD、Ultra-sonic等技术的纳米材料沉积喷墨打印和表面涂层知识。

<p>微液滴的生成,其主要过程是如何施以足够大的作用力以扰动连续相与分散相之间存在的界面张力使之达到失稳。<br/>通常,当待分散相某处施加的力大于其界面张力时,该处微量液体会突破界面张力进入连续相中形成液滴。</p><p>使用Inkjet喷墨打印技术,将溶液进行分配,使其形成0.1-1000pL,速度在0.1-10m/s的微液滴,液滴发生频率可设定在0-30kHz之间。液滴一致性误差仅为0.1%。</p><p>适用于多种材料发生的液滴在空中撞击,融合或破碎的过程的探究;不同材料微液滴发生过程的探究;</p><p>微液滴在空中受环境影响的探究;微液滴撞击基板的探究;微液滴挥发过程的探究等。</p><p><br/></p><p><br/></p>

液滴发生

微液滴的生成,其主要过程是如何施以足够大的作用力以扰动连续相与分散相之间存在的界面张力使之达到失稳。
通常,当待分散相某处施加的力大于其界面张力时,该处微量液体会突破界面张力进入连续相中形成液滴。

使用Inkjet喷墨打印技术,将溶液进行分配,使其形成0.1-1000pL,速度在0.1-10m/s的微液滴,液滴发生频率可设定在0-30kHz之间。液滴一致性误差仅为0.1%。

适用于多种材料发生的液滴在空中撞击,融合或破碎的过程的探究;不同材料微液滴发生过程的探究;

微液滴在空中受环境影响的探究;微液滴撞击基板的探究;微液滴挥发过程的探究等。



典型案例

  • 【在基材上发生】微粒印刷 ▲

    在颗粒技术和粉末制造领域,需要生产具有均匀特性的颗粒,以达到严格的产品质量。目前的雾器可以产生各种形状的喷雾,但是高气体流量和进料流量以及不同的喷雾方式会导致喷雾空气混合复杂、雾滴轨迹复杂,进而导致雾滴和雾滴壁碰撞、壁沉积、污垢、腐蚀、有害团聚、大粒径分布,最终形成不均匀的产物。近年来,所有以粉末形式生产的材料都不断要求新的粒子特性,以改善有效密度、压实性、连接、分布和定向性,以形成独特的基体材料。此外,生物和制药对高球形颗粒提出了新的要求。如:球形颗粒提供了一种有用和实用的手段,通过提供足够浓度的药物直接作用于靶点,以在预期的几天到几个月的时间内实现适当的药物释放,使药物的药效最大化,因此,特别适合于化疗药物和结核病药物的胶体药物递送。此外,在许多生物、农业和药物测试研究中,会涉及对细胞结构和功能的理解,而其数据/信号的灵敏度和重现性与样品粒子的均匀性有直接关系。喷印技术,是一种快速、可靠、无溶剂的工艺,具有产生单分散液滴的显著优势,可精确控制液滴特性,因此可用于微粒印刷的产生。 MicroFab的MJ-AT-01挤压式压电打印头,喷头喷嘴孔径为30μm,可用于微粒的产生。如:采用纳米银悬浮液和金属有机硝酸银溶液(AgNO3)进行研究,发现喷墨油滴的尺寸将决定最后的线宽,在喷墨打印过程中,悬浮颗粒的存在会增大墨滴在基材上的直径。进一步采用更高的驱动脉冲,可明显提高喷墨打印导电线的成形性。然而,更大的线宽引入会导致较高的熔滴重叠与较低的驱动脉冲相结合,引起胀形现象,使直线度变差。 MicroFab的MJ-SF-80喷头可用于制造具有不同形态和表面特征的颗粒。该设备长34mm,直径12mm,孔板直径80μm,喷墨装置由一个环形压电换能器连接到一个玻璃毛细管组成玻璃毛细管一端连接到进料容器,而另一端具有用于喷射液体的孔板。通过对压电换能器施加电压,换能器产生了封闭在玻璃毛细管内流体的体积变化,进而产生压力波,压力波通过液柱向喷嘴方向传播,孔口处流体柱横截面的骤变会诱发液滴的形成。由于喷墨微点胶是数据驱动的、非接触式的,因此能够以高速率在非平面表面上精确沉积皮升体积。由于是数据驱动的,使用灵活,可应用到生产线进行自动化操作。此外,不需要特定应用的工具,如光罩或屏幕;作为一种添加剂工艺,没有化学废物,属于环境友好型。

  • 【在基材上发生】支架药物喷涂 ▲

    心血管手术中,为避免动脉再狭窄,通常使用由金属或合金制成的支架送入体腔,扩张后与管腔壁贴合,起到支撑血管的作用。通常,为预防并发症的产生,需要对支架进行药物涂层处理。常见方法有浸泡、超声波喷涂、气体喷涂等,然而,药物的浓度、分布等无法得到有效控制。 基于Inkjet的支架喷涂技术,具有射流中液滴的可控和可再生优势,同时可将射流精确地引导到设备表面的位置,且具有以下优势: (1)可进行多层药物和溶液的涂层,每一层可使用不同的药物和溶液; (2)支架不同位置的局部密度和厚度可控; (3)药物沉积仅在支架表面,避免支架断裂进入血液中; (4)喷墨技术由软件数据控制,可针对不同的支架模型进行多次转换。 MicroFab已成功制备了与实际支架尺寸相匹配的模型支架,这些带有菱形细胞的模拟支架可用于打印/涂层试验。可以通过在喷墨显微分配器下协调移动支架来覆盖模拟支架,并通过连续移动支架(旋转和轴向移动),根据所需的点对点间距产生液滴,“即时”打印完成。在喷涂过程中,支架作旋转和轴向运动,非常微小的药物液滴按设定的要求由喷头射至支架表面而形成涂层。 研究表明,将100 ug药物(一个小支架的典型剂量)程序化靶递送到试管中,给剂量的标准偏差(SD)为0.6 ug。在137 ug剂量下,在1.8 ug SD的涂层上喷射,支架管显示了100%的捕获效率。而且研究发现,连续喷射制备的支架可产生高达91%的效率,变异系数低至2%,相比于传统的喷雾效果提高了10倍以上。

  • 【在基材上发生】农药精确变量喷施研究 ▲

    ​农药精确变量喷施技术一直是智能化植保机械的重要研究内容,一直是精细化农业领域的研究热点。农药精确喷施牵涉到农药的有效利用、农产品安全、环境污染和操作者的人身安全等众多问题。如何按照农业要求快速准确地进行喷施作业,并使其具有良好的雾化特性和均匀性是喷施的关键要素。 农药雾滴在叶片表面的沉积、润湿和粘附行为在植物保护中至关重要,因为对它们的研究能有效减少化学品浪费和环境污染。实际中数以百万计的直接作用于植物表面的农药雾滴会到达非目标地点,且这些农药在降落途中可能被风吹离轨道,也可能从植被表面反弹回来。这种偏差导致施药效果降低且施药频率增加,因此,将大多数液滴定位在目标表面以防止化学物质损失在农药植保中是一个非常值得关注的问题。解决这一问题的方法包括用表面活性剂改变农药制剂的流变性质,并对喷雾液滴进行静电充电,以增强在叶片表面的沉积和扩散效果。表面活性剂的加入起到发泡或消泡、稳定或缓冲以及润湿或粘附性质的作用,并降低制剂的界面张力以增强液滴的沉积。来自有机硅氧烷、聚电解质和乙氧基化合物的表面活性剂已被试验证明有效,其效力取决于浓度水平。虽然表面活性剂农药复合物改善了植物表面的液滴沉积,但它受到叶片方向和表面形态、液滴行为和施用系统的抑制。亲水或疏水叶片表面在正面-背面部分暴露于喷雾液滴决定了沉积效率。喷射液滴的电荷叠加也增强了极性吸引和环绕沉积。高电压施加为液滴提供了特有的负电荷,以吸引叶片结构中的正离子。在不同的各向异性的情况下,表面活性剂-农药配方和电极荷电率的组合效应可以最大化液滴在不同叶片表面上的沉积和扩散。 江苏大学课题组利用自己设计的药物液滴观测分析平台研究了不同浓度的表面活性剂和农药制剂在疏水性叶片正面的原位带电单尺寸液滴行为。实验平台可以研究溶液电导率、液滴荷电率、表面张力、静态接触角、疏水性叶片表面上的沉积和润湿面积。定制的液滴发生器与开发的感应电极喷嘴帽相结合,用于产生带电的单一尺寸的液滴。该模型包括一个注射针头,通过头部泵的振荡运动将带电液滴流分配到叶片表面。注射器的不锈钢针头长度为5毫米,直径为0.71毫米,容量为2.5毫升,可产生2至5微升的单个液滴。针头固定在喷嘴帽内,每侧有两个30 × 10 × 3毫米的电极,并连接到容量为15千伏的高压发生器,以在液滴破裂时将负电荷叠加到液滴上。使用平板电极在农药喷洒的连续液滴排放区(适用于扁平扇形喷嘴)获得高性能和最大充电强度的对称电场。该装置是可调节的,以在任何设置下保持针尖和测试台之间的最大距离为50毫米。该装置在一个封闭的实验室内,内部有静风以防止液滴喷射脱轨,湿度为67%,温度为25℃,以提供模拟现场条件的理想液滴蒸发。将不同浓度的表面活性剂-农药复合物的制剂吸入注射泵。以指定的时间间隔转动注射器的旋钮,以喷射带电的液滴大小。 在叶片表面,带电的单一大小的液滴在破裂后具有势能,降落(沉积),膨胀获得动能(扩散),并根据表面的各向异性粗糙度或光滑度粘附(保留)或脱落(反弹)。光谱研究了雾滴在叶片表面的沉积、滞留、扩散、反弹和接触角等撞击行为。由于叶片表面的形态特性是生物稳定的,因此只有配方和应用系统才能得到改善,以增强液滴撞击行为。表面活性剂的加入改变了农药溶液的流变特性,而电荷的叠加有助于液滴撞击叶片表面结构。不同浓度的表面活性剂-农药溶液的电性能和导电性从根本上影响了液滴的荷电性以及液滴在叶片表面的沉积状态。 液滴体积大小的变化直接影响表面活性剂和农药制剂在施用过程中的表面张力。溶液中分子内的内聚力对于较大的液滴尺寸比较小的液滴尺寸更强,因此γ值更大。在所有配方中,液滴尺寸的增加使γ值最大化。相比之下,水溶剂会产生较大的液滴,但在水溶液中混合表面活性剂和农药会产生较小的液滴,从而产生较低的γ值。 在农药喷洒过程中,液滴表现出撞击、弹跳或扩散行为。配方的流变性质和叶片表面的纹理类别影响着撞击过程,这取决于液滴夹带的动能。由于弹跳通常在高冲击力下发生,在本实验中,静电感应原理应用于表面活性剂-农药溶液的液滴时,这种现象是不可见的。带电液滴轰击、固定和润湿叶片表面的时间取决于液滴的体积。在植物的正面叶片上,不同浓度的乳油和制剂的液滴冲击行为不同。液滴在表面的扩散随着溶液中表面活性剂-农药浓度的增加,达到最大平衡点。 总之,在实验室中研究了表面活性剂-农药复合制剂对电荷的响应性,以增强液滴在疏水性叶表面上的撞击行为。该制剂在溶液中表现出表面活性剂和农药作为超级分散剂的特征。除水外,表面活性剂和农药在水溶液中的电导率随着浓度的增加而增加,这进一步增加了液滴的电荷量。喷射液滴流中电荷的叠加降低了γ值,并且总是降低叶片疏水表面的接触角。带电液滴的γ值和静态θ值的下降程度与液滴的大小和体积成正比。 在农药喷雾应用方面,MicroFab研制的微液滴发生系统可以为研究药物喷雾的发生和控制提供一整套研究方案。通过MicroFab的微液滴发生系统可以观测液滴在植物叶面上的运动情况及附着状态。该系统可以很好的应用于农药精确喷施技术的研究。其优点:1、高精度,喷墨产生高度可重复的液滴,可通过聚集产生更大的体积;2、连续变化,从此应用的角度来看,单个滴(20-200 pL)的极小尺寸几乎会产生总(累积)量的连续变化。

  • 【在基材上发生】葡萄糖生物传感器

    用喷墨打印技术制造葡萄糖生物传感器。a)在碳电极上打印4000滴GOX溶液后的固定滴。b)是(a)滴入的平面图。c)20×20网格的平面图,每个网格位置打印10滴。通常用于酶传感器的碳电极相对疏水,初始大接触角导致打印后酶溶液的扩散不良(a和b)。为了在电极上实现更均匀的酶沉积,可以添加表面活性剂以降低接触角,或者可以对打印机进行编程,以将单个打印液滴分布在电极上的定义阵列中,而不是在单个位置(c)。向溶液中加入表面活性剂会降低其表面张力,从而降低接触角。(MJ-ATP-01, MicroFab)

  • 【在空中发生】EUV光源液滴发生器 ▲

    光刻机是在半导体领域必不可少的设备,无论生产制造什么样的芯片,都脱离不了光刻机,如果说航空发动机代表了人类科技领域发展的顶级水平,那么光刻机则是半导体工业界最为耀眼的明珠,其具有技术难度最高、单台成本最大、决定集成密度等特点。而目前最为先进的光刻机是有荷兰ASML生产的EUV光刻机,华为麒麟990 5G版首次采用了7nm EUV技术,EUV技术也叫紫外光刻(Extreme Ultraviolet Lithography),它以波长为10-14nm的极紫外光作为光源的光刻技术。具体为采用波长为13.5nm的紫外线,目前1-4代光刻机使用的光源都属于深紫外光,而5代EUV光刻机则属于极紫外光。 本文主要介绍MicroFab的Inkjet技术在EVU上的应用。光刻是制造芯片的关键技术,光刻机通过光源发出的光通过具有图形的光罩(Reticle Mask,又称掩模版)在经过缩图透镜将光罩的图案照射到涂有光刻胶的硅片上,光刻胶在见光后会发生性质变化,从而使光罩上的图形在硅片上刻录,使硅片具有电子路线的作用。 EUV(极紫外光)的产生是通过激光将锡滴作为燃料使其产生等离子体的过程。LPP EUV(激光等离子体极紫外光源)是将高功率的的二氧化碳激光打在直径约为20微米的锡液滴上,通过高功率激光使锡滴膨胀蒸发形成锡蒸汽,然后将蒸汽加热产生等离子体,这个过程会产生极紫外光。产生EUV的燃料可以是锡(Sn)、氙(Xe)、锂(Li),由于氙(Xe)和锂(Li)在实际测试中其产生的功率及工艺无法达到生产要求,锡滴被作为EUV制造的理想燃料。 LPP EUV系统主要包括锡滴发生器、激光器、源收集器、辐射收集器组成。锡滴发生器用于产生作为燃料的锡液滴,用于产生20um的锡滴;激光器用于提供能量源,用于激发锡滴,通过引导激光束至锡滴来激发锡滴产生等离子体;源收集器是一个中空的腔体,其内部为真空环境用于支持等离子体;辐射收集器接收EUV辐射,在产生等离子体的过程中会发生EUV辐射,通过辐射收集器进行收集并将辐射狙击成EUV光束进行后续工作。 其步骤为:1、锡液发生器使锡液滴落入真空室。2、脉冲式高功率激光器击中从旁飞过的锡液滴—每秒 50,000 次。Laser分为两部分,前脉冲和功率放大器。前脉冲和主脉冲击中锡液使其气化。3、锡原子被电离,产生高强度的等离子体。4、收集镜捕获等离子体向所有方向发出的 EUV 辐射,汇聚形成光源。5、将集中起来的光源传递至光刻系统以曝光晶片。 EVU的锡液滴发生装置主要是由MicroFab提供的喷墨压电头组装而成。锡滴发生器主要包含储液器、锡材料、定制化的压电喷头、加热器。储液器用于存储燃料液体,燃料液体由锡材料制成,在超过235℃高温下融化,在气体压力作用下通过压电喷头挤出,由于瑞利破碎形成液滴。 锡滴产生原理:定制化的压电喷头中心一端有3-5μm的小孔为毛细玻璃管,毛细玻璃管外壁粘结压电陶瓷,压电陶瓷在电信号的作用下会发生形变产生振动,振动从压电陶瓷传递至毛细玻璃管。储液器连接至毛细玻璃管的另一端,储液器中的锡材料在加热到高于235℃时形成锡溶液,锡溶液在气压作用下从毛细玻璃管挤出,产生束流。在没有压电陶瓷的情况下,束流将在液滴发生一段距离(约喷嘴直径的100-1000倍)后自然破碎形成液滴,其液滴直径大约为喷嘴直径的2倍或略小,两液滴间隔是喷嘴直径的大约4.5倍,虽然毛细玻璃管外壁没有压电陶瓷的作用液可以产生瑞利破碎,但压电陶瓷可以通过控制毛细玻璃管内的压力控制瑞利破碎,从而使形成液滴的位置更加明确。 如果喷嘴的直径为4μm,燃料液滴可以通过瑞利破碎形成约7μm直径的液滴,液滴分开大约18μm的距离,喷嘴的液滴产生速率对应的瑞利频率与喷嘴处燃料的平均速度和喷嘴的直径相关。 虽然在没有压电陶瓷制动的情况下也可以发生燃料液体束流的瑞利破碎,但压电陶瓷可以通过控制毛细玻璃管内的压力控制瑞利破碎,调制毛细玻璃管内的压力调制离开喷嘴的液体燃料的排出速度,并使液体燃料的束流在离开喷嘴之后以受控制的方式直接破碎为液滴。如果通过压电陶瓷施加的频率足够接近瑞利频率,则燃料液滴形成,液滴被分开的距离由离开燃料喷嘴的平均排出速度和由压电陶瓷施加的频率决定。

  • 【在空中发生】NASA实验舱太空观测 ▲

    美国宇航局在微重力环境中的减重抛物线轨道飞行的初始测试中使用了MicroFab的微分配器。空间近晶质岛的观察与分析(OASIS)项目正在探索微重力环境中自由悬浮液晶的特性。 MicroFab的喷墨分配器用于在液晶表面上沉积液滴。分配器在2014年在国际空间站上飞行的设备上安装,在那里进行完整的实验。 上图显示了使用MicroFab喷墨分配器的气泡室。 空间近晶质岛(OASIS)甘油/水填充物的观察和分析:在每个样品容器上用甘油/水填充Inkjet液滴设备,用于最终实验协议,并更换硬盘驱动器。OASIS研究液晶在微重力下的独特行为,包括它们的整体运动和被称为近晶岛的晶体层的合并。液晶用于电视和时钟的显示屏,它们也存在于肥皂和细胞膜中。该实验允许对这些结构的行为进行详细研究,以及微重力如何影响它们像液体和固体晶体一样起作用的独特能力。

  • 【在空中发生】单细胞打印 ▲

    细胞,作为生物结构和功能的基本单位,研究其相关生物行为及其规律与本质,对于探索疾病的机理与治疗手段,有着巨大的意义。对细胞的研究是一个复杂的工程,细胞在人体内处于复杂的微环境之中,且细胞体积微小、种类多样,在细胞水平进行细胞识别、代谢物检测、内部组分分析、细胞结构与功能表征、细胞间相互作用分析等工作也都有着很高的难度。因为样品量小,分析物浓度低,样品体系复杂,细胞水平分析对于传统的研究和分析方法与技术是一个巨大的挑战。 在非均匀电场中采取介电泳(DEP)的方法,可有效进行单细胞的无接触处理。微波通过在覆有三层金属层的柔性印刷电路板上钻孔形成,因此每个微波形成了三个环形电极。聚苯乙烯珠和电池的实施装置,包括一组微波管和一个流体装置,用于从底部向微波管中填充生理盐水缓冲液,并从顶部将颗粒分配到微波管中。有源微波有望替代单流腔或通道芯片,其主要优点是可在不同的位置分离细胞,支持灵活的上清替代,简化单细胞回收程序,保证与标准高密度微量滴度板的机械相容性,但是依然存在高通量的痛点待解决。 在这项技术中,采用MicroFab的Jet Drive III和一个MJ-A喷头,可将聚苯乙烯珠和细胞进行均匀分配,喷射出的液滴体积为0.5nl。实验中,稀释参数为105个细胞/ml,分析每滴细胞的统计分布得知,当每微孔滴10个细胞时,平均期望有0.5个细胞,可以有效获得单个细胞。

  • 【在空中发生】细胞打印 ▲

    使用MicroFab Inkjet技术喷墨打印的大鼠视网膜细胞,这些细胞不仅存活下来,而且还保留了生长发育的能力。(剑桥大学,2013)

  • 【在空中发生】细胞打印 ▲

    使用MicroFab Inkjet技术将生物墨水喷射到2% 的氯化钙溶液中,形成嵌入细胞的藻酸盐微球。 上图显示了使用1×10^6个细胞/mL生物墨水制成的一些细胞封装微球。

  • 【在溶液或介质中发生】微球囊打印 ▲

    微球囊是将分散的固体物质颗粒、液滴或气体完全包封在一层膜中形成球状微胶囊的技术,目前已被广泛应用微囊化药物、燃料、香料、粘合剂药物的控制释放、动植物细胞培养、细胞和酶的固定以及生化物质分离等领域,具有广阔的应用前景。 现阶段的研究热点集中于减小微囊的体积和微囊尺寸均匀化。这是由于体积小的微囊具有利于氧和营养物的供应、囊内死腔小和便于微环境投放等优势。常见的溶剂蒸发法、相分离法、界面沉积法和喷雾干燥法等物理化学法,需要在高温条件下或使用反应剧烈的破坏性有机溶剂,制备的微胶囊粒径分布宽,很难满足医药工业和生物技术领域中保持生物物质活性的要求。而喷印技术制备的微球囊具有以下优势: (1)微球囊尺寸高度统一; (2)微球囊的制备尺寸可调整; (3)微球囊的药物释放速率可控; (4)生产规模易于扩大(使用阵列喷头或多喷头); (5)局部给药,避免毒性扩散; (6)生物可降解,无需手术切除。 目前,Jetlab 制备的微球囊,可控的粒径范围15~100 μm。研究显示,采用该系统制备的载紫杉醇微球,对所载的紫杉醇分子本身无破坏,保证了药物的治疗效果,包封率至少可达 67 % ,且粒径均匀,药物释放缓慢。研究表明,喷墨技术生产的微球持续释放超过50天,可有效抑制和逆转肿瘤的生长。

  • 【在溶液或介质中发生】载药聚合物微球打印 ▲

    癌症的治疗过程中发现,许多类型的癌症不仅对一种药物产生反应,而是会对至少两种细胞毒素或两种抗癌药物产生联合反应,而且,药物的综合治疗可有效降低癌症复发的风险。但是,由于多种药物在治疗过程中对剂量的要求会有所不同,因此,与传统的由固体聚合物微球组成的微球不同,科研人员进一步研发了一种双层微球结构,其聚合物的核心被另一种聚合物的涂层包裹,多种负载药物可以针对性的治疗不同类型的癌细胞。此类载药聚合物微囊,利用其可对指定组织、器官的靶向性和对药物的缓释特性,从而有效地降低药物给病人带来的副作 用并提高药物的生物利用度。 目前,该类药物载体的发展和研究重点体现在--开发新型微粒制备方法,提高药物的包封率,并且在最大程度上确保芯材的完整性和活性,制备过程必须安全无毒;其次是通过对微粒壳材的修饰,使其具有良好的生物通透性,从而加强微粒的 包封性能,具有靶向性,对病变细胞或组织具有特异性的识别,让药物穿过人体 内的生物屏障直接作用于病变区域,提高生物利用度。 利用基于MicroFab微压电喷头的微喷射系统,可用于生产双层微球。该系统由两根遮光管组成。外管用于注入形成外壳的液体,而空气注入内管。空气可以用第二种流体代替,从而产生多层球体。

  • 【在溶液或介质中发生】细胞封装(油包水) ▲

    藻类细胞固定化是废水处理、有用代谢物生产和养殖管理的常用技术。然而,目前技术中对固定液滴的大小、微生物种群和生产率的控制需要改进。在这里,Hwa-Rim Lee所在课题组首次使用按需喷墨打印将海藻的孢子固定在海藻酸盐微粒中。通过将藻酸盐-孢子悬浮液打印到氯化钙溶液中来产生带有固定孢子的微粒。他们证明喷墨技术可以通过改变墨水中的孢子密度将喷射液滴中的孢子数量控制在0.23到1.87的范围内。在基于打印的孢子封装后,他们观察到菌体的初始发芽和持续生长,直到培养45天。该研究表明,喷墨打印具有固定藻类的巨大潜力,并且控制封装孢子数量及其微环境的能力可以促进对封装孢子微观相互作用的研究。 将藻类细胞固定在聚合物水凝胶中具有广泛的应用。固定化藻细胞可用于污水处理,以去除养分、金属和工业污染物。捕获的藻类细胞还可用于产生代谢物、测量毒性、通过冷冻保存细胞以及管理原种培养物。该技术还能够改善固定化藻细胞的代谢、功能和生长。在水凝胶颗粒中捕获微生物的方法包括将细胞悬浮液常规滴入装有硬化溶液的容器中;挤压滴水;重力驱动滴水;悬浮喷涂。所有这些方法要么速度慢,要么无法充分控制液滴的大小、微生物含量或生产率。一种实用的方法将克服这些缺点。 按需喷墨(DOD)喷墨打印广泛用于各种领域,如生物打印、印刷电子和3D制造。DOD压电喷墨打印在压电喷墨打印机的喷嘴通道中使用了一个压电致动器。电压脉冲会减少装有墨水的腔室的体积,因此有些会以液滴的形式喷出。压电喷墨打印可以在>10kHz下产生大小为1–100pL的液滴。喷射液滴的大小可以通过调整输入电压脉冲或选择合适的喷嘴来控制,并且小于水凝胶中营养物质和代谢物的扩散极限(100-200μm)。小尺寸的微粒可以使捕获的藻类细胞生长过程中的抑制作用最小化。由于能够喷射少量墨水,喷墨打印已被用于封装大分子、药物和哺乳动物细胞。

  • 【在空中发生】气味发生装置(娱乐与虚拟现实) ▲

    香气通过给游戏玩家带来自然的气味来增强游戏的动作。但是,香气的使用更加深入。研究表明,香气可用于引发恐惧,兴奋和许多其他情绪。在游戏中添加此维度将创造更逼真的游戏体验。 MicroFab创建了代号为Pinoke的原型香气生成系统,以演示该技术在游戏环境中的紧凑性和简便性。Pinoke型设备可能位于显示器旁边,正前方,甚至可能像医生的听诊器一样被佩戴。写入软件代码的数字信号触发香气发生器发出精确数量的适当香气。Pinoke顶上的莫霍克号是一个香气盒,当香气材料被消耗掉时,只需将其拆下并更换。 游戏原型Pinoke中的相同技术适用于电影观看体验。声音彻底改变了无声电影,香气也改变了现代电影。香气生成设备还将增强虚拟现实体验。虚拟现实头戴式耳机中的安装设备将以轻松的方式将香气传递给受训者或游戏玩家。将气味纳入虚拟现实训练中将使训练环境更接近现实生活。

  • 【在空中发生】香气发生装置(零售和电商)▲

    互联网或您当地的杂货店的下一个层面将是增加香气。想象一下在当地杂货店的过道上走。您经过烘烤区,特别是盒装布朗尼蛋糕区。您的运动会触发一个传感器,散发出新鲜出炉的巧克力蛋糕的香气。这会诱使您购买巧克力蛋糕吗?甚至使您渴望巧克力蛋糕吗?与单独包装相比,香气的使用可能非常有力,甚至更具说服力。 在香水行业,市场研究可能是一项艰巨的任务。通过使用香气生成设备,公司可以以比当前方法更实惠的成本对最终用户进行市场研究。这些工具不仅高度适用于香水行业,而且还适用于任何希望更多地了解香气对消费者决策产生影响的行业,如:商场、酒店等。 当放置在百货商店中并链接回香水制造商时,内部装有香水产生装置的信息亭将是一种宝贵的工具。使用信息亭的个人可以任意组合,从不同的气味或“香精节点”中进行选择,并在几秒钟内闻到新创建的香精。然后,程序可以在记录信息并将其通过Internet发送回制造商的过程中,始终询问消费者对所创建香水的喜好。该应用程序还可用于市场测试机构甚至研究实验室。

  • 【在空中发生】生物气体传感器(阿尔茨海默氏病早期诊断) ▲

    依据2000年的美国人口调查报告显示,全美范围内约有450万人患有阿尔茨海默症,85岁以上的老年人群体中约有一般人患有阿尔茨海默症,而且,预计2050年患病人口数将进一步攀升至1320万人,每年阿尔茨海默症患者的直接和间接治疗费用高达1000亿美元,对社会和家庭造成严重的影响。阿尔茨海默症的早诊断早干预,可有效延迟疾病的发病,降低治疗费用,提升患者满意度。在对患者的研究中发现,患病初期对气体的识别能力显著下降,且嗅觉信息的处理与海马体体积之间具有很强的相关性,因此可采用生物体的气体测试有效检测阿尔茨海默症的发病。气体识别测试(UPSIT)是最常见的刮嗅测试,但是其不能量化嗅觉阈值,且不同浓度溶液的制备较为繁琐,无法用于疾病的准确预测。 嗅觉测量技术是基于数字控制的高精度喷墨点胶技术,可精准确定人的嗅觉阈值。由于特定气味的阈值被确定为非常高的分辨率,且喷墨微分机能够提供纳摩尔数量的气味每一滴,因此该系统可通过可互换的墨盒来散发多种气味。通过使用试验中使用的气味剂的稀释剂,该分辨率可以延长到单滴分配。 MicroFab嗅觉检测由压电驱动的微分配装置组成,将少量气味源分配到加热元件上,挥发油通过非常低的气流传递给测试者。嗅觉计带有一个配备微处理器的控制框、液晶显示屏和操作按钮,具备下载测试数据的能力。检测时,将控制器预先编程,以对数递增的步进下降计数,并确保测试者在试验之间有足够的恢复时间。 实验选用了一种玫瑰气味剂(苯乙醇),因为它能选择性地刺激嗅觉脑神经而不影响鼻内三叉神经末梢。另选用柠檬气味剂(柠檬提取物)进行实验,因为它会刺激三叉神经。第一次试验中,小剂量的气体(12.06 nl)传送至测试者的输入气流中。在随后的试验中,对数衰减的气味量(09 nl~102.5 nl)被释放在等量的空气中,并且由测试者报告是否闻到另一种气味。 实验发现,MicroFab的嗅觉检测针对玫瑰气味剂(苯乙醇)和柠檬气味剂(柠檬提取物)两种气味,检测灵敏度高,且发现阿尔茨海默症患者的嗅觉阈值(89.02 nl 和74.34 nl)明显高于帕金森氏症患者(23.08 nl 和74.34 nl)。

  • 【在空中发生】爆炸物探测器校准 ▲

    自2001年9月11日起,检测非常低含量的非法物质(化学和生物制剂及炸药)的需求已成为联邦,州和地方政府机构的当务之急。在机场,边境口岸,联邦大楼,港口,使馆和高度安全的区域中,需要能够检测微量上述物质的系统。在这样的区域中已经部署了成千上万的痕量检测器。爆炸物代表一类重要的非法物质,而军事爆炸物(例如TNT,RDX,PETN,HMX)是重要的子类,目前是各种痕量检测方法所针对的重要子类。痕量检测-检测极少量的爆炸物-识别与爆炸物接触的人或物。痕量检测方法已在从手持和便携式到台式或门户的各种仪器中实现。下面介绍一些最常用的检测方法。 检测方法从爆炸物散发的气雾中识别信息。主要问题是在环境温度下蒸气压或高炸药浓度相当低。25°C空气中爆炸性蒸气的浓度范围为千分之1到万亿分之一或更低。因此,检测仪器要么必须采样大量空气,要么具有高灵敏度,首选后一种选择。除了犬的痕量检测外,检测方法还可以分类为:分离方法(气相色谱-GC,高效液相色谱-HPLC,毛细管电泳-CE),离子检测方法(质谱-MS,离子迁移谱-IMS),振动光谱法(红外吸收,拉曼散射等),紫外线/可见光法(发荧光的聚合物,颜色反应),免疫化学传感器或电化学传感器。单个“电子鼻”仪器中可以包含多个传感器。从对当前市场上可用系统的分析来看,IMS跟踪工具似乎非常常用,可以应用于广泛的系统(从手持式到门户)。 在所描述的各种方法中,尤其是在灵敏度的最新改进之后,气雾检测成为了最实用,最可取的检测方法。产生已知爆炸物浓度的气雾的现有系统是基于从固体炸药中提取气雾。这些系统相当大,几乎没有小型化的前景,动态范围也很小。MicroFab的系统可以轻松减小尺寸,并可以作为模块化组件制造,以包含在跟踪检测系统中,以进行定期自动校准。 通过产生已知浓度的爆炸性气雾,气雾发生器提供了一种手段来验证现场系统的检出限及其重新校准。IMS是气雾痕量检测中使用最广泛的技术之一,但是它对由于天气或海拔高度引起的压力变化敏感。气雾发生器可用于在各种操作/环境条件下重新校准IMS系统。 气雾发生器的另一个应用领域是各种仪器之间的比较。当前,关于仪器灵敏度的唯一可用信息来自制造商。每个制造商使用不同的方法来确定和报告其仪器的灵敏度。为了能够比较来自不同制造商的痕量检测器,基准仪器和测试程序是必需的。 为了提高检测极限而进行的持续研究和开发需要非常低浓度的气雾源。期望这种气雾源是便携式的,因为在现场部署的大量气雾痕量检测器是固定的。现有技术不是很精确,不能轻易小型化。NIST已使用MicroFab微型分配器的数据评估了采用喷墨微型分配器的气雾发生器对几种炸药(RDX,TNT和PETN)提供的潜在范围,并显示浓度几乎可以连续变化,范围为每0到百分之一百万亿(v / v)。该范围不仅涵盖当前的检测极限,而且还将涵盖未来新开发的探测器灵敏度的提高。

  • 【在空中发生】气溶胶喷射打印 ▲

      通过Inkjet喷墨打印技术实现气溶胶生成。

  • 【在空中发生】大气物理水汽标定 ▲

    大气探测。液滴测量范围2~50μm。